An organellar maturase associates with multiple group II introns.
نویسندگان
چکیده
Bacterial group II introns encode maturase proteins required for splicing. In organelles of photosynthetic land plants, most of the group II introns have lost the reading frames for maturases. Here, we show that the plastidial maturase MatK not only interacts with its encoding intron within trnK-UUU, but also with six additional group II introns, all belonging to intron subclass IIA. Mapping analyses of RNA binding sites revealed MatK to recognize multiple regions within the trnK intron. Organellar group II introns are considered to be the ancestors of nuclear spliceosomal introns. That MatK associates with multiple intron ligands makes it an attractive model for an early trans-acting nuclear splicing activity.
منابع مشابه
Putative proteins related to group II intron reverse transcriptase/maturases are encoded by nuclear genes in higher plants.
The Arabidopsis thaliana nuclear genome sequence revealed several open reading frames encoding proteins related to group II intron-encoded reverse transcriptase/maturases. Here, we show via sequence alignments that at least four such open reading frames are conserved in the nuclear genomes of A.thaliana and Oryza sativa (rice) and that they encode putative proteins belonging to two different cl...
متن کاملGroup II intron splicing factors in plant mitochondria
Group II introns are large catalytic RNAs (ribozymes) which are found in bacteria and organellar genomes of several lower eukaryotes, but are particularly prevalent within the mitochondrial genomes (mtDNA) in plants, where they reside in numerous critical genes. Their excision is therefore essential for mitochondria biogenesis and respiratory functions, and is facilitated in vivo by various pro...
متن کاملAnalysis of the Roles of the Arabidopsis nMAT2 and PMH2 Proteins Provided with New Insights into the Regulation of Group II Intron Splicing in Land-Plant Mitochondria
Plant mitochondria are remarkable with respect to the presence of numerous group II introns which reside in many essential genes. The removal of the organellar introns from the coding genes they interrupt is essential for respiratory functions, and is facilitated by different enzymes that belong to a diverse set of protein families. These include maturases and RNA helicases related proteins tha...
متن کاملComprehensive Phylogenetic Analysis of Bacterial Group II Intron-Encoded ORFs Lacking the DNA Endonuclease Domain Reveals New Varieties
Group II introns are self-splicing RNAs that act as mobile retroelements in the organelles of plants, fungi and protists. They are also widely distributed in bacteria, and are generally assumed to be the ancestors of nuclear spliceosomal introns. Most bacterial group II introns have a multifunctional intron-encoded protein (IEP) ORF within the ribozyme domain IV (DIV). This ORF encodes an N-ter...
متن کاملInsights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome
Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmIn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 7 شماره
صفحات -
تاریخ انتشار 2010